Column

Chart A

Column

Chart B

Chart C

---
title: "Dashboard: Airbnb"
output: 
  flexdashboard::flex_dashboard:
    orientation: columns
    vertical_layout: fill
    source_code: embed
---


```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(p8105.datasets)
library(plotly)
```

```{r}
data("nyc_airbnb")
nyc_airbnb = 
  nyc_airbnb %>% 
  mutate(stars = review_scores_location / 2) %>% 
  select(neighbourhood_group, neighbourhood, stars, price, room_type, lat, long) %>% 
  filter(
    neighbourhood_group == "Manhattan",
    room_type == "Entire home/apt",
    price %in% 100:500
  ) %>% 
  drop_na(stars)
```

Column {data-width=650}
-----------------------------------------------------------------------

### Chart A

```{r}
nyc_airbnb %>% 
  mutate(
    text_label = str_c("Price: $", price, "\nStars: ", stars)
  ) %>% 
  plot_ly(
    x = ~lat, y = ~long, type = "scatter", mode = "markers",
    color = ~price, text = ~text_label, alpha = .5
  )
```

Column {data-width=350}
-----------------------------------------------------------------------

### Chart B

```{r}
nyc_airbnb %>%
  mutate(
    neighbourhood = fct_reorder(neighbourhood, price)
  ) %>% 
  plot_ly(
    y = ~ price, color = ~neighbourhood, type = "box",
    colors = "viridis")
```

### Chart C

```{r}
nyc_airbnb %>% 
  count(neighbourhood) %>% 
  mutate(neighbourhood = fct_reorder(neighbourhood, n)) %>% 
  plot_ly(x = ~neighbourhood, y = ~n, color = ~neighbourhood, type = "bar", colors = "viridis")
```